Pacemaking by HCN Channels Requires Interaction with Phosphoinositides
نویسندگان
چکیده
منابع مشابه
Pacemaking by HCN Channels Requires Interaction with Phosphoinositides
Hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channels mediate the depolarizing cation current (termed I(h) or I(f)) that initiates spontaneous rhythmic activity in heart and brain. This function critically depends on the reliable opening of HCN channels in the subthreshold voltage-range. Here we show that activation of HCN channels at physiologically relevant voltages requires int...
متن کاملHCN channels and heart rate.
Hyperpolarization and Cyclic Nucleotide (HCN) -gated channels represent the molecular correlates of the "funny" pacemaker current (I(f)), a current activated by hyperpolarization and considered able to influence the sinus node function in generating cardiac impulses. HCN channels are a family of six transmembrane domain, single pore-loop, hyperpolarization activated, non-selective cation channe...
متن کاملIsoform dependent regulation of human HCN channels by cholesterol
Cholesterol has been shown to regulate numerous ion channels. HCN channels represent the molecular correlate of If or Ih in sinoatrial node (SAN) and neuronal cells. Previous studies have implicated a role for cholesterol in the regulation of rabbit HCN4 channels with effects on pacing in the rabbit SAN. Using electrophysiological and biochemical approaches, we examined the effect of cholestero...
متن کاملRegulation of epileptiform discharges in rat neocortex by HCN channels.
Hyperpolarization-activated, cyclic nucleotide-gated, nonspecific cation (HCN) channels have a well-characterized role in regulation of cellular excitability and network activity. The role of these channels in control of epileptiform discharges is less thoroughly understood. This is especially pertinent given the altered HCN channel expression in epilepsy. We hypothesized that inhibition of HCN...
متن کاملTransient receptor potential channels meet phosphoinositides
Transient receptor potential (TRP) cation channels are unique cellular sensors that are involved in multiple cellular functions, ranging from transduction of sensory signals to the regulation of Ca(2+) and Mg(2+) homoeostasis. Malfunctioning of TRP channels is now recognized as the cause of several hereditary and acquired human diseases. At the time of cloning of the first Drosophila TRP channe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 2006
ISSN: 0896-6273
DOI: 10.1016/j.neuron.2006.12.005